conductor layer 2322 of battery 2320. In other embodiments, insulator layer 2312 and bottom conductor layer 2322 are omitted, and a conductive substrate 2310 itself forms the bottom conductive layer for battery 2320. In some embodiments, battery 2320 is a thin-film battery deposited by a process, and having a structure, as described in FIGS. 1B to 8 herein. In the embodiment shown, battery 2320 includes a bottom conductive layer/electrical contact 2322 and a top conductive layer/electrical contact 2324, and is covered by a protective/electrically insulating layer 2331 having one or more openings or vias for electrical connections, for example, a via through which pad/trace 2332 connects to battery 2320. In some embodiments, the top conductor 2324 of battery 2320 is the anode connection. In the embodiment shown, the connection to the lower conductive laver/electrical contact 2322 from pad/trace 2334 is a conductive trace deposited over the side of battery 2320 to extended contact area 2333. In some embodiments, additional connection pads/traces 2335, 2336, and 2337 are deposited, for example, using a shadow mask that defines where the traces will go, and a metal-evaporation source, PVD source, CVD source, sputter source or other source to supply the conductor being laid down. In other embodiments, a conductive layer for circuit 2330 is deposited over an entire upper surface, and the unneeded portions are removed, for example, using photolithography and etching techniques. In some embodiments, multiple layers are successively deposited, wherein these layers include conductors, insulators, semiconductors (e.g., polysilicon or polymer semiconductors), electrolytes, passivation layers, mechanical-protection layers, sealants, reactants (such as sensor materials that react with, e.g., smoke, carbon dioxide, antibodies, DNA, etc.) and/or decorative pattern, topography, design or color lay- [0251] Some embodiments further include a separately fabricated circuit 2340 that is bonded (e.g., by adhesive or solder) to the rest of the deposited circuitry 2330, for example, a flip-chip integrated circuit 2340 having bump, ball or ball-grid array connections 2341 as shown in FIG. 23. In other embodiments, packaged chips are used, e.g., J-leaded, gull-wing leaded, in-line-pin, or other plastic- or ceramic-encapsulated chip packages. [0252] FIG. 24A shows a perspective view of an embodiment 2400 of the present invention having a battery 2320 overlaid with an integrated device 2430. In some embodiments, integrated device 2340 is a so-called supercapacitor relying on either charge accumulation on opposing sides on an insulator (as in a capacitor) or ion transport across an electrolyte (as in a battery), or both charge accumulation and ion transport to store electrical energy. In some embodiments, integrated device 2340 includes a photovoltaic cell of conventional construction deposited directly on battery 2320. [0253] Some embodiments further include a separately fabricated circuit device such as an integrated circuit chip 2440 that is wire-lead bonded to device 2430 using wire 2441, to device-battery common terminal 2324 using wire 2443, and to bottom battery contact 2322 using wire 2442. For example, in one embodiment having a supercapacitor device 2430, integrated circuit 2430 includes a wireless communication circuit that uses the battery for overall power needs and uses supercapacitor device 2430 for quick-burst power needs such as for transmitting short burst of data to an antenna. Other embodiments include other fabricated circuit devices such as switches, LEDs or other light sources, LCD displays, antennas, sensors, capacitors, resistors, etc., wired to device **2400**. [0254] In one embodiment, battery 2320 includes a bottom conductor layer of platinum (e.g., 0.5 micrometers thick), a cathode of lithium cobalt oxide covered by a LiPON electrolyte and a carbon anode, and a top electrode of platinum. On top of these depositions, device 2430 includes a layer of ruthenium oxide, an electrolyte of LiPON, another layer of ruthenium oxide and a top layer of platinum. Such a device 2430 would store energy by transporting lithium ions derived from the LiPON electrolyte from one to another of the top and bottom surface of the electrolyte, as well as perhaps moving charge (electrons) to an opposing surface. Such a device exhibits a higher-current discharge rate than a comparable battery, and a higher energy storage than a comparable capacitor. The present invention including ionassist deposition provides for higher quality cathode films (better crystal orientation) and better electrolyte films (more complete isolation and fewer pinhole defects for any given thickness, thus allowing thinner electrolyte films that increase ion transport rates), and better capacitor dielectric films (more complete isolation and fewer pinhole defects for any given thickness, thus allowing thinner dielectric films that increase dielectric isolation, capacitance, and charge storage). In some embodiments, a capacitor insulator layer is made of a barium strontium titanate. [0255] In some embodiments, a cathode layer of lithium-cobalt-oxide is covered by a LiPON electrolyte layer and a lithium(0.5)-cobalt-oxide anode layer. This anode layer is non-stoichiometric deposited using a source that has excess cobalt and oxygen relative to lithium as compared to that used for the cathode, and various embodiments use different lithium ratios. Design and Fabrication of Solid-State Power Sources Fabricated as a Laminate on a Rigid or Flexible Direct Energy Conversion Material such as Photovoltaic [0256] Virtually all electronics require energy to operate and perform the designed functions. This energy typically comes from either an AC source such as a home wall electrical outlet or a battery mounted in the packaging of the electronic device. More recently, advances in the conversion of heat and light into energy have fueled research in the area of direct energy conversion (e.g., by photovoltaic cells). This has the potential to supply a large percentage of the world energy needs in a clean and safe manner. One problem with these methods of energy supply has been the cyclical nature of the energy being converted. Whether heat or light, the source usually goes away for a 6- to 12-hour period resulting in zero output from the unit. One way around this problem is to supply a battery with the unit to supply power during periods of low light or heat input. This is however not an ideal solution as today's rechargeable batteries are bulky and failure prone after several charge/discharge cycles. The present invention solves this problem by integrating its solid-state Lithium battery directly on the energy conversion substrate. The present battery has a distinct advantage over current technologies, in that it is not prone to failure or memory problems over tens of thousands of charge/discharge cycles, has very high capacity, is lightweight, can be